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A B S T R A C T

Supplementing or replacing the Global Satellite Navigation System (GNSS) for robust UAV localization remains
a challenge. In this work, we propose an infrared vision and altitude sensor fusion method called IRAL,
which mainly includes on-board near-infrared (NIR) beacons, off-board narrowband-pass vision sensors with
the same wavelength as the beacon and strapdown high precision altitude sensors. The beacon with a high
signal-to-noise ratio as a cooperative target provides robust features, thereby facilitating beacon recognition
through the designed gradient-based sequential frame template matching (GSFTM) algorithm. The proposed
method measures the altitude difference between the UAV and the vision sensor through the altitude sensor
to accomplish depth estimation. After obtaining the beacon’s pixel coordinates and depth, combined with
the intrinsics and extrinsics of the vision sensor, the observation equation can be set up to solve the UAV’s
spatial position. Real-world experiments under various scenarios demonstrate that the proposed method stably
achieves high accuracy.
. Introduction

In recent years, unmanned aerial vehicles (UAVs) have had exten-
ive applications in various scenarios due to their low cost and flexible
se, such as border security [1], search and rescue (SAR) [2], fire-
ighting [3], precision agriculture [4], mapping [5,6], structural health
onitoring (SHM) [7,8], etc. In practical scenarios, UAVs generally

equire accurate and reliable localization to accomplish their missions
ffectively. At present, UAV localization still mainly relies on the Global
atellite Navigation System (GNSS). However, GNSS has the fatal draw-
ack of being highly susceptible to dropout, jamming, interference and
s extremely difficult to cover closed environments including indoors
nd urban canyons [9,10]. Therefore, it is critical to achieve reliable
nd accurate UAV localization in GNSS-denied environments.

Visual localization has become one of the main methods to solve this
roblem due to the advantages of vision sensors such as resistance to
lectromagnetic interference, low weight and small size [11]. It relies
n the UAV’s on-board vision sensor to capture feature points in the
urrounding environment during flight, which is then combined with
he sensor’s intrinsics to calculate its position relative to the feature
oints. Since 2D images do not contain depth information, i.e., the
istance of pixels relative to the sensor, it is not possible to solve the
osition based on a single frame, but requires the aid of other measures
o estimate depth for localization. Thus, visual localization involves two

∗ Correspondence to: Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China
E-mail address: wang_qiang@bit.edu.cn (Q. Wang).

key issues: feature point acquisition and depth estimation. The former
is mainly related to the acquisition of environmental features, and the
latter depends largely on the type of sensor adopted. The accuracy and
stability of these two aspects basically dictate the performance of a
visual localization method.

Depending on whether the environmental features are acquired in
advance, visual localization can be categorized as map-based or map-
less. Map-based localization requires a large amount of data to be
collected and processed in advance, leading to increased implementa-
tion costs as well as inconvenience [12]. Further, since the map is a
priori, it lacks adaptability to environmental changes [13]. Map-less lo-
calization, such as simultaneous localization and map building (SLAM),
requires real-time environmental perception and data processing. It is
not only sensitive to the number and recognizability of feature points
in the environment, but also places requirements on the already limited
on-board computational resources [14,15]. It suffers from the problem
in terms of accuracy degradation or even failure due to the lack of
feature points that can be captured by the vision sensor [16,17]. In
addition, general visual localization is based on visible light sensors,
which depend on ideal illumination and thus are difficult to function
in extreme illumination environments such as night [18].

In order to improve the robustness of feature point acquisition
in visual localization, optical beacon-based cooperative methods are
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Fig. 1. Schematic of the proposed IRAL.
being increasingly deployed. The idea is to use patterns or optical
markers with certain prior features as beacons, and then capture them
by the matching sensor or algorithm. In this way the beacons form
cooperative targets with respect to the visual sensors, which can be
recognized as robust feature points during localization. Depending on
whether the vision sensor is on-board or off-board, it can be categorized
into internal methods and external methods. Internal methods require
prior deployment of a sufficient number of off-board beacons in the
environment expected to be covered by the UAV during its flight, which
largely limits the range available for localization [19–22]. Meanwhile,
by analogy with map-based methods, internal localization is compara-
ble to manually constructing a prior map by adding feature points to
the environment, thus also suffering from high implementation costs
and inconvenience. External methods can be regarded as the deploy-
ment of on-board beacons that turn UAVs into cooperative targets for
recognition by off-board vision sensors, typically optical motion capture
systems. Some commercial products can achieve millimeter-level or
even higher accuracy in localization. However, they require multiple
expensive, specialized cameras to be set up in advance on a defined
site, with a limited coverage area and high cost of use [23,24]. Some
works with more flexible use have also been proposed in recent years,
whereas they suffer from a lack of robustness [25,26] or still rely
on high-cost sensors [25,27]. In addition, both internal and external
methods have the problems of being interfered with by visible light in
the environment and sensitivity to light conditions [28], as long as the
beacons used operate in the visible light band.

As mentioned above, in addition to feature point capture, depth
estimation is also a key component necessary for visual localization.
For this aspect, the type of vision sensor used plays a major role.
Since single-frame images do not contain depth information, visual
localization using a monocular RGB camera needs to rely on the move-
ment of static feature points in time-series frame images to solve
for depth. To obtain depth with a simple low-cost monocular RGB
vision sensor, other factors must be added. It is currently popular to
2 
obtain depth based on fusion with LiDAR and monocular RGB vision
sensors, whereas LiDAR-vision sensor fusion often requires complex
calibrations before use and has a high implementation cost [29]. Other
types of vision sensors such as binocular or RGB-D cameras can acquire
depth directly from the image. However, the former lacks robustness
to illumination changes and motion blur [30]. The latter has lower
resolution and a shorter effective range [31].

In this work, we propose a novel external cooperative method using
InfraRed vision and ALtitude sensor fusion called IRAL for robust
and versatile UAV localization in GNSS-denied environments, whose
schematic is shown in Fig. 1. Wavelength-specific near-infrared (NIR)
integrated LEDs as strapdown on-board beacons provide robust feature
points for UAVs. For the off-board narrowband-pass vision sensor of
the same wavelength as the beacon, the UAV becomes a cooperative
target for a high signal-to-noise ratio. In this context, we design a
gradient-based sequential frame template matching (GSFTM) algorithm
for robust beacon recognition to obtain pixel coordinates with low
computational resource requirements. For general external cooperative
methods, multiple visual sensors are required for depth estimation. In
contrast, the proposed IRAL relies on a single low-cost monocular RGB
vision sensor fused with altitude sensors to achieve it. Specifically,
the on-board strapdown high-precision altitude sensor measures the
altitude of the UAV above the ground. Since the off-board vision sensor
remains static during the localization process, its altitude above the
ground is easily measured manually or also by an altitude sensor if
necessary. In this way, the altitude difference between the UAV and
the vision sensor is obtained, which is then combined with the angular
deviation of the recognized beacon relative to the sensor optical center
and the known extrinsics of the vision sensor to calculate the depth
accurately and efficiently. Synthesizing the above, the pixel coordinates
of the recognized beacon, combined with the estimated depth and the
intrinsics & extrinsics of the vision sensor, are used to set up an observa-
tion equation to solve the spatial position of the UAV. In addition, since
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NIR light is independent of the visible spectrum and the narrowband-
pass ensures a high signal-to-noise ratio of the beacon, the proposed
IRAL is immune to any visible light interference in the environment
during the localization process. Meanwhile, it can still perform well
under extreme light conditions due to its complete insensitivity to
illumination.

In general, this work offers several key contributions, including:

1. A novel external cooperative visual localization model based on
on-board NIR beacons, off-board narrow-band pass monocular
RGB visual sensors, and strapdown altitude sensors is estab-
lished.

2. The proposed method constitutes a solution to the two key issues
of feature point acquisition and depth estimation for visual local-
ization in a simple and efficient way with low-cost components.

3. A GSFTM algorithm with low computational resource require-
ments for efficient cooperative beacon recognition is designed.

4. The proposed method achieves centimeter-level accuracy and is
insensitive to both environmental features and illumination, thus
providing a robust and versatile solution for UAV localization in
GNSS-denied environments.

The paper is organized as follows: Section 2 gives a brief intro-
duction to the related work. Section 3 details the methodology of this
work. Section 4 describes the design and recognition of the NIR beacon.
Section 5 includes the performance of the proposed method in the
experiments with the corresponding discussion. Section 6 concludes the
paper.

2. Related work

This section presents related work on optical beacon-based internal
nd external cooperative localization methods for unmanned vehicles.

2.1. Internal methods

Most existing methods fall into this category. First introduced
by [32], a structured beacon inspired by the barber-pole was applied to
stimate the relative position and heading of two collaborative master–
lave mobile robots. This work can essentially be seen as deploying
 mobile beacon in the environment while using an on-board vision
ensor to recognize it and solve for relative position. Some recent
ork [25,26] has drawn on this idea as well. However, this kind of
ethod requires additional robots resulting in higher implementation

osts and lacks robustness. Thus in contrast, the deployment of multiple
fixed off-board beacons is more widely adopted. In [20–22], multiple
LEDs are installed in a certain distribution on the ceiling for indoor
positioning. Some other work uses triangulation algorithms to achieve
beacon-based localization [33–35]. Whereas these methods require
rior installation of the beacons at predefined geometric positions and
he localization range is extremely limited. Deploying a number of
eacons with specific features and recognizing them based on visible
ight vision sensors is a feasible solution as well [28,36]. For example,
he ArUco marker-based localization is introduced in [36]. The ArUco

marker is a square patch with a unique black and white barcode. It is
applied by deploying a sufficient number of markers in advance over
he desired flight area and recording their prior positions. Multiple
arkers are recognized by the on-board vision sensor and then the

elative position of the UAV can be solved. While like ordinary SLAM,
t is unable to overcome the sensitivity to illumination, which leads
o failure in extreme light conditions. In addition, the pre-deployment
f a large number of beacons leads to inconvenience and limits the

localization range. [37,38] focuses on mounting infrared beacons of
pecific wavelengths on roadway landmarks such as street lights, traffic
ignals, etc., while placing narrowband-pass vision sensors of the same
 m

3 
wavelengths on vehicles to recognize the beacons for self-localization.
his method can be used to facilitate autonomous driving, but also

requires a large number of beacons to be pre-placed and does not apply
to UAVs. In this work, beacon recognition mainly relies on the high
signal-to-noise ratio from NIR narrowband-pass rather than relying on
specific geometric features. In this way, not only robustness is ensured,
but also failure due to visible light interference as well as insufficient
environmental illumination can be avoided. Moreover, the proposed
method does not require prior deployment of multiple beacons in the
environment. This effectively increases the ease of implementation.

2.2. External methods

Up to now, some mature commercial motion capture systems are
based on this idea, such as Optitrack [23], Vicon [24] and FZMo-
tion. It has more applications than just unmanned vehicles, so it is
enerally referred to as marker-based optical tracking. These systems
an achieve millimeter-level or even higher accuracy in localization.
evertheless, they necessitate the deployment of numerous costly,

pecialized cameras in advance at designated locations, resulting in
estricted coverage and a high operational expense. [39] proposes a

low-cost method, whereas it is only applicable to estimating the range
between unmanned vehicles in a swarm. By deploying stroboscopic
infrared LEDs as coded beacons on the robot, [40] can achieve high-
precision localization in indoor environments. However, at least six
on-board beacons are required for this work and they must be captured
by the vision sensor at the same time. Therefore, it only works at very
close range and has limited robustness. [41] implements the use of Wii
infrared vision sensors to recognize on-board infrared beacons for tar-
et localization. While it only verifies the viability of this method from
he perspective of signal-to-noise ratio without establishing a complete
ocalization model and applying it to unmanned vehicles. In contrast,
he proposed method achieves high accuracy localization in both indoor
nd outdoor environments with cost-effectiveness. Moreover, it works
t large ranges between the vision sensor and the on-board beacon
ithout degradation. In particular, the proposed method includes a

ow-cost camera only and eliminates the requirement for expensive
ensors like dynamic vision sensors (DVS) as compared to [27].

3. Methodology

3.1. Vision sensor intrinsics

In this work, the off-board vision sensor consists of a narrowband
filter and a monocular RGB camera. We adopt the pin-hole model
to describe the off-board vision sensor’s intrinsics. The non-singular
intrinsics matrix, which contains the internal vision sensor parameters,
is denoted as follows

𝐊 =
⎛

⎜

⎜

⎝

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎞

⎟

⎟

⎠

, (1)

where (𝑐𝑥, 𝑐𝑦)T is the principal point in pixels. Let the image resolution,
i.e., the total pixels that the vision sensor has be 𝑀 ⋅𝑁 , then the pixel
coordinates of the principal point are equal to half the resolution. 𝑓𝑥
nd 𝑓𝑦 are the horizontal and vertical pixel focal lengths, respectively.
hey are usually not directly available but can be obtained by multi-
lying the lens focal length 𝑓 with the scaling factors 𝛼 and 𝛽 from the
mage sensor (CMOS or CCD) size to the pixel plane size. Let the sensor
ize be 𝑥𝑠𝑒𝑛𝑠 ⋅ 𝑦𝑠𝑒𝑛𝑠, and the pixel plane size is numerically equal to the
mage resolution 𝑀 ⋅𝑁 , the scaling factors can be estimated by

𝛼 = 𝑀
𝑥𝑠𝑒𝑛𝑠

, 𝛽 = 𝑁
𝑦𝑠𝑒𝑛𝑠

, (2)

Then the pixel focal length in both directions can be obtained by 𝑓𝑥 =
 𝑓 and 𝑓𝑦 = 𝛽 𝑓 . Note that the pixel focal length no longer has the

easure of length and its unit is the pixel.
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Fig. 2. Geometry for the proposed method.

3.2. Vision sensor extrinsics

For visual localization, the extrinsics represents the pose transfor-
mation of the vision sensor, including translation and rotation [42–44].
We first describe the rotation and translation of the vision sensor
based on the geometry for the proposed method, and then elaborate
on the construction of the extrinsics with the Lie group. As shown
in Fig. 2, 𝑋𝑤𝑌𝑤𝑍𝑤 represents the world coordinate system used for
localization. With the initial position of the vision sensor’s optical
center as the origin, the initial attitude parallel to the ground defines
the three-axis orientation by the right-hand frame. 𝑋𝑐𝑌𝑐𝑍𝑐 represents
the camera coordinate system defined by the current orientation of the
vision sensor. During localization, the position of the vision sensor is
stationary. While in orientation it has 2-DoF including pitch and yaw.
As shown in Fig. 2, for the 𝑖th frame, the angle at which the sensor
rotates around the 𝑥-axis is the pitch 𝜃𝑖, i.e., the angle between 𝑌𝑤
and 𝑌𝑐 . Correspondingly, the angle at which the sensor rotates around
the 𝑦-axis is the yaw 𝜓𝑖, i.e., the angle between 𝑋𝑤 and 𝑋𝑐 . With this
definition of orientation, there is also theoretically a roll defined by the
angle at which the sensor rotates around the 𝑧-axis. However, in this
work, the vision sensor has no DoF in terms of roll. In other words, it
cannot perform rotations around the 𝑧-axis, thus roll is not considered
in the orientation.

In this context, the vision sensor extrinsics can be constructed
based on Lie group SE(3). We first consider the Lie algebra se(3)
corresponding to SE(3), which belongs to the R6 space [43], as follows

se(3) =
{

𝝃𝑖 =
(

𝝆𝑖
)

∈ R6,𝝆𝑖 ∈ R3,𝝓𝑖 ∈ so(3)

}

, (3)
𝝓𝑖

4 
where 𝝃𝑖 is the extrinsics expressed as a vector at frame 𝑖. Its first
three dimensions represent the translation, denoted as 𝝆𝑖. The second
three dimensions represent the rotation, denoted as 𝝓𝑖. Now we need
to transform the vectors in se(3) into matrices in SE(3). In Lie algebra
se(3), the ∧ operation maps vectors to matrices [43], then we have

𝝃∧𝑖 =

(

𝝓∧
𝑖 𝝆𝑖

𝟎T3 0

)

∈ R4×4, (4)

where 𝟎T3 denotes the transpose of 3-dimensional zero vector. In so(3),
the ∧ operation maps vectors to antisymmetric matrices belonging to
the R3×3 space, i.e., 𝝓∧

𝑖 ∈ R3×3 [43]. Here we are not concerned with
the specific form of 𝝓∧

𝑖 , but simply derive its exponential mapping from
Rodrigues’ formula [43,44] as

exp(𝝓∧
𝑖 ) =

∞
∑

𝑛=0

1
𝑛!
(𝝓∧

𝑖 )
𝑛 = 𝐑𝑖, (5)

where 𝐑𝑖 is the Euler matrix of the 𝑖th frame

𝐑𝑖 =
⎛

⎜

⎜

⎝

cos𝜓𝑖 0 − sin𝜓𝑖
sin 𝜃𝑖 sin𝜓𝑖 cos 𝜃𝑖 − sin 𝜃𝑖 cos𝜓𝑖
cos 𝜃𝑖 sin𝜓𝑖 sin 𝜃𝑖 cos 𝜃𝑖 cos𝜓𝑖

⎞

⎟

⎟

⎠

, (6)

Notice that 𝐑𝑖 ∈ SO(3). It is also known that the transformation
matrix in SE(3) is composed of the Euler matrix in SO(3) and the vector
representing the translation [43]. Then similarly, we can transform 𝝃𝑖
to SE(3) also by the exponential mapping [44], as follows

exp(𝝃∧𝑖 ) =
(
∑∞
𝑛=0

1
𝑛! (𝝓

∧
𝑖 )
𝑛 ∑∞

𝑛=0
1

(𝑛+1)! (𝝓
∧
𝑖 )
𝑛𝝆𝑖

𝟎T3 exp(0)

)

=

(

𝐑𝑖 𝐭
𝟎T3 1

)

. (7)

As mentioned above, since the translation of the visual sensor is not
considered in this work, 𝝆𝑖 can be regarded as zero vector in the
operation. Thus we have 𝐭 = 𝟎3. At this point, the extrinsics denoted
by SE(3) is obtained.

3.3. Depth estimation

In this work, we measure the altitude difference between the UAV
and the vision sensor to solve for depth. The on-board strapdown
altitude sensor measures the height above ground of the UAV ℎ𝑑 . Since
the position of the vision sensor is static during localization, the altitude
above ground at its optical center ℎ𝑐 is also constant. Therefore, the
altitude difference between the UAV and the vision sensor at frame
𝑖 is ℎ𝑖 = ℎ𝑑 − ℎ𝑐 . The projected point of the beacon on the image
plane and the principal point of the image plane each connected to
the origin 𝑂 form an inclination. It can be decomposed into horizontal
and vertical angular deviations in terms of the direction of the pixel
plane’s two axes, which are classified into the notations 𝛥𝜓𝑖 and 𝛥𝜃𝑖 for
the 𝑖th frame, respectively. Then according to the proposed localization
geometry, the depth 𝑠 can be calculated by

𝑠𝑖 =
ℎ𝑖

sin 𝜃𝑖 + cos 𝜃𝑖 t an𝛥𝜃𝑖
, (8)

where

t an𝛥𝜃𝑖 = −𝑣𝑖 − 𝑐𝑦
𝑓𝑦

. (9)

3.4. Position solution

After obtaining the beacon’s pixel coordinates by recognition and
depth by altimetry, combined with the intrinsics and extrinsics of the
vision sensor, the observation equation can be set up to solve the
UAV’s spatial position. Note that the 3D spatial position of the UAV
is 4-dimensional when expressed in homogeneous coordinates, while
the homogeneous pixel coordinates obtained from beacon recognition
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are 3-dimensional. Thus the corresponding processing is required in
order to satisfy the requirements of matrix multiplication during the
computation. In summary, the following observation equation can be
set up as

𝑠𝑖𝐩𝑖 = 𝐊
(

exp(𝝃∧𝑖 )𝐏𝑖
)

[ ,], (10)

where 𝐩𝑖 = (𝑢𝑖, 𝑣𝑖, 1)T is the pixel coordinates of the 𝑖th frame, and
𝐏𝑖 = (𝑋𝑖, 𝑌𝑖, 𝑍𝑖, 1)T is the position of the UAV in the world coordi-
nate system. Both coordinates are expressed in homogeneous form.
(

exp(𝝃∧𝑖 )𝐏𝑖
)

[ ,] denotes the submatrix taken without loss of gen-
erality [45] to satisfy the matrix multiplication requirement in the
operation. Considering the size of

(

exp(𝝃∧𝑖 )𝐏𝑖
)

as 𝑚 ⋅ 𝑛, we have

 =
𝑚
⋃

𝑗=1

(

[𝑚]
1

)

,  =
𝑛
⋃

𝑘=1

(

[𝑛]
1

)

. (11)

4. Beacon design & recognition

4.1. Beacon design

The basic principle of beacon design is to increase the signal-
to-noise ratio of the beacon as much as possible, i.e., to exclude
interference from other light sources in the environment. Since the NIR
light is independent of the visible spectrum, interference from visible
light is naturally excluded. During the daytime, however, there is
inevitably interference from the sun. The sun, as an idealized blackbody
radiation source, emits light in the full wavelength spectrum at different
intensities [46]. On average, the sunlight is most intense in the visible
band and less intense in the infrared and ultraviolet bands. Most vision
sensors operate effectively in the visible and infrared bands, so an
infrared light source is most suitable as a beacon.

Since light transmission in the atmosphere will be attenuated by
the scattering and absorption of atmospheric molecules, the intensity
of sunlight at different wavelengths will have different degrees of
decrease, and the greatest degree of decrease in the NIR band is
940 nm [37,46], as shown in Fig. 3. Therefore, we select the NIR
LED of this wavelength as the beacon, and configure the vision sensor
with a narrowband filter of the same wavelength. In addition, to
sufficiently separate the beacon from the background and raise its
signal-to-noise ratio, we set the vision sensor’s exposure time to a low
level of 10-100 μs.

4.2. Beacon recognition

Although the intensity of sunlight at 940 nm is low, there is still
interference during the day. As shown in Fig. 4, in the absence of
solar interference, the background is basically filtered out to appear
black, while only the beacon is clearly visible in the image. Since most
of the background is filtered out after narrowband-pass, the signal-
to-noise ratio of the beacon in the image is already high, so the
recognition can theoretically be accomplished by binary segmentation.
Fixed-threshold-based methods require thresholds to be determined in
advance and are unable to be changed during use, resulting in incon-
venience and sensitivity to illumination changes that may occur during
UAV flight. Adaptive segmentation algorithms such as the widely used
Otsu method [47], may be able to address these issues to some extent.
However, since the area occupied by the beacon in the image is too
small resulting in an extremely low proportion of its histogram com-
ponent, adaptive segmentation fails to effectively separate the beacon.
Methods with high computational resource requirements, such as those
based on neural networks, have extreme difficulty in ensuring real-time
so they are unnecessary and unsuitable for the purposes of this work. In
addition, on a clear day, if the sun is unavoidably present in the field of
view, there would be strong interference, resulting in the most extreme
challenge of the beacon recognition.
5 
Fig. 3. The solar radiation spectrum.

Algorithm 1 GSFTM algorithm
Input: narrowband-pass image sequence  = {𝑓𝑖(𝑥, 𝑦)} containing 𝑙

frames, where 𝑥 ∈ [1, 𝑀], 𝑦 ∈ [1, 𝑁] ⊳ Input images are gray-scale.
Output: segmented image sequence  = {𝑔𝑖(𝑥, 𝑦)}
Output: beacon pixel coordinates sequence  = {(𝑢𝑖, 𝑣𝑖)}
1: Calculate the initial frame’s gradient vector ∇𝑓1(𝑥, 𝑦) =

(

𝜕 𝑓1(𝑥,𝑦)
𝜕 𝑥 , 𝜕 𝑓1(𝑥,𝑦)𝜕 𝑦

)

2: Calculate gradient magnitude from Euclidean paradigm of gradient
vector 𝑀1(𝑥, 𝑦) = ‖∇𝑓1(𝑥, 𝑦)‖

3: if the 𝑀1(𝑥, 𝑦) is an outlier then
4: 𝑡𝑒𝑚𝑝← (𝑥, 𝑦)
5: end if
6: if (𝑥, 𝑦) ∈ 𝑡𝑒𝑚𝑝 then
7: 𝑔1(𝑥, 𝑦) ← 1
8: else
9: 𝑔1(𝑥, 𝑦) ← 0

10: end if
11: for 𝑖 ≥ 2 do

12: 𝑁 𝑆 𝐷𝑖(𝑥, 𝑦) ←
∑

(𝑎,𝑏)∈𝑡𝑒𝑚𝑝
(𝑓𝑖−1(𝑎,𝑏)−𝑓𝑖(𝑥+𝑎,𝑦+𝑏))2

√

∑

(𝑎,𝑏)∈𝑡𝑒𝑚𝑝
𝑓2𝑖−1(𝑎,𝑏) ⋅

∑

(𝑎,𝑏)∈𝑡𝑒𝑚𝑝
𝑓2𝑖 (𝑥+𝑎,𝑦+𝑏)

13: if the 𝑁 𝑆 𝐷𝑖(𝑥, 𝑦) is an outlier then
14: 𝑔𝑖(𝑥, 𝑦) ← 1
15: 𝑡𝑒𝑚𝑝 ← (𝑥, 𝑦)
16: else
17: 𝑔𝑖(𝑥, 𝑦) ← 0
18: end if
19: end for
20: Calculate the expectation of 𝑥 and 𝑦 from each set’s non-zero points

in  = {𝑔𝑖(𝑥, 𝑦)} yields  = {(𝑢𝑖, 𝑣𝑖)}

In this context, the GSFTM algorithm with low computational re-
source requirements is designed to accomplish beacon recognition ef-
ficiently. For sequences of images captured by the vision sensor in
localization, gradient vectors are first calculated for each point of the
initial frame. Then the magnitude is obtained from the vector to get
the edge information. In this way the area of the beacon in the image
can be segmented and thus the pixel coordinates can be obtained. Since
the placement of the vision sensor is pre-determined in practice, it is
always possible to manually ensure that there are no solar interferences
in the initial frame. Thus after the processing, the initial template is
obtained. This allows the template to be matched to the next frame
based on the normalized squared difference (NSD) to segment the
beacons and obtain the pixel coordinates. In the subsequent processing,
the segmented image obtained in each frame is used as the template for
the next frame. Thus the beacon recognition can be accomplished by
sequential frame template matching. As shown in Fig. 4, even though
there is solar and reflective interference in the sequential frames, the
beacons can still be recognized accurately. To minimize computational
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Fig. 4. The procedure of the designed GSFTM algorithm and the processing results.
costs, it is sufficient to keep only one template at runtime. Meanwhile,
the color features of beacons can be ignored due to their high signal-to-
noise ratio in narrowband-pass images. Therefore it is reasonable and
efficient to convert the multi-channel image captured by the vision sen-
sor to single-channel grayscale form before processing. The complete
process is shown in Algorithm 1.

5. Experiments

5.1. Experimental setup

In order to fully validate the performance of the proposed method,
we conducted experiments in various real-world scenarios. We set up
typical scenarios including indoor and outdoor based on environmental
features and light conditions to demonstrate the versatility of the pro-
posed method. Fig. 5 shows the experimental scenarios under favorable
illumination conditions. Note that we also conducted experiments in
these four typical environments under extreme illumination conditions.
Direct demonstrations of dark environments are not shown here as poor
lighting can make it difficult to discern. Experimental results for all
real-world scenarios and related discussions are detailed below.

For the indoor experiments, in order to measure the accuracy of
the proposed method, we used the FZMotion motion capture system
with millimeter-level accuracy to obtain the ground truth. We deployed
the calibration rods used to determine the FZMotion system in close
proximity to the vision sensor and oriented them in the same initial
orientation. By measuring and correcting the deviation from the origin
we can overlap their right-hand coordinate systems to compare the
trajectories they solve. Since the motion capture camera of the FZMo-
tion system adopts 850 nm light source, there will be no interference
with the NIR vision of the proposed method. In the outdoor experi-
ments, we take the localization results of a common consumer-grade
6 
Fig. 5. Experimental scenarios under favorable illumination conditions. (a) Feature-rich
indoor environment (Scenario 1). (b) Feature-poor indoor environment (Scenario 3). (c)
Open outdoor environment (Scenario 5). (d) Outdoor environment of urban buildings.
(Scenario 7).

Global Positioning System (GPS) module as a reference to compare the
performance of the proposed method with GNSS.

The main experimental devices consisted of a UAV with required
loads and an external narrowband-pass vision sensor, as shown in
Fig. 6. 940 nm integrated LEDs with heat sink were installed on the
UAV as an on-board beacon. TFmini-S laser rangefinder and SPL06
barometer are used as the strapdown altitude sensors with high ac-
curacy for indoor and outdoor experiments, respectively. In order to
eliminate the unfavorable effects of ground pressure variations on the
altitude measurements as well as to offset some of the systematic errors,
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Fig. 6. Experimental devices. (a) Experimental UAV with required loads mainly include
940 nm integrated LEDs used as the on-board NIR beacon and motion capture markers
for FZMotion system used to get ground truth in indoor experiments. (b) External
vision sensor is mainly composed of DS-2ZMN2507(C) camera module with a 940 nm
narrowband filter.

Fig. 7. Sensor placement and UAV movement area in real-world indoor experiments.

Table 1
Indoor experimental settings and performance of the proposed method.

Setting Environment Illumination ATE RMSE (m) Peak error (m)

Scenario 1 Feature-rich Bright 0.0684 0.1245
Scenario 2 Feature-rich Dark 0.0643 0.1157
Scenario 3 Feature-poor Bright 0.0537 0.1003
Scenario 4 Feature-poor Dark 0.0559 0.1087

the same type of barometers are integrated into both the UAV and the
vision sensor in the outdoor experiments. Hikvision’s DS-2ZMN2507(C)
camera module with a 940 nm narrowband filter form the off-board
narrowband-pass vision sensor, which also contains a set of 2-DoF
servo motors with an angular resolution of 0.01◦ in the pitch and yaw
directions to derive accurate extrinsics.

5.2. Indoor experiments

5.2.1. Evaluation metrics
In order to quantitatively assess the performance of the proposed

method, the absolute trajectory error (ATE) for test sequences of length
𝑙 is employed. ATE reflects the deviation between the measured values
derived from the proposed method and the ground truth. In order to
harmonize the magnitude of the error with the experimental data and
to avoid the influence of the length of the test sequence on the results,
the ATE is defined based on the root mean square error (RMSE), as
follows

ATE =
(

1
𝑙

∑

‖𝑃𝑖 − 𝑃𝑖‖
2
)

1
2
, (12)
𝑙 𝑖=1

7 
Fig. 8. Trajectories under indoor experimental scenarios. (a) Trajectories for Scenario
1. (b) Trajectories for Scenario 2. (c) Trajectories for Scenario 3. (d) Trajectories for
Scenario 4.

Fig. 9. UAV velocities in indoor experiments. (a) Velocity for Scenario 1. (b) Velocity
for Scenario 2. (c) Velocity for Scenario 3. (d) Velocity for Scenario 4.
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Fig. 10. The error of the proposed method in x, y, z directions for each experimental
scenario. (a) Error for Scenario 1. (b) Error for Scenario 2. (c) Error for Scenario 3.
(d) Error for Scenario 4.

where 𝑃𝑖 and 𝑃𝑖 denote the ground truth and the measured value of
the 𝑖th frame in the test sequence, respectively. It is represented in the
Table 1 as ATE RMSE. In order to examine whether there is a situation
where the proposed method deviates excessively from the ground truth
at a certain point in the test sequence, the peak error, i.e., max ‖𝑃𝑖−𝑃𝑖‖
is calculated as well.

In addition, we also analyzed the error of the proposed method in
three directions for each experimental scenario separately. The results
are also expressed as the RMSE between the measured coordinate and
the ground truth of the corresponding direction, as shown in Fig. 10.

5.2.2. Experimental results
We manipulate the UAV moving along approximately circular tra-

jectories and simultaneously measure the spatial trajectory using the
proposed IRAL and the FZMotion system under each experimental
scenario, as shown in Fig. 7. The measured trajectories are shown in
Fig. 8 and the performance is shown in Table 1. From the results, it
can be seen that the proposed method is able to achieve centimeter-
level accuracy stably regardless of both environmental features and
illumination conditions. The peak errors in all experimental scenarios
are also around 0.1 m, indicating that the proposed method is not
subject to large jumps during localization. Additionally, in conjunction
with the velocity curves demonstrated in Fig. 9, it is evident that the
speed of the UAV does not affect the performance of the proposed
method.

According to Fig. 10, the proposed method performs high accuracy
in each direction as well, where the errors in the 𝑧-direction are slightly
larger. This is due to the fact that this error is mainly generated by the
vertical pixel error of the recognized beacon in the image plane. Since
the vision sensor’s field of view is a rectangle that is horizontally wide
and vertically narrow, the vertical pixel resolution is lower resulting in
larger errors.

In addition, experiments under complex preset trajectories are also
conducted. We manipulate the UAV to move along the track of the
8 
Fig. 11. Results under complex trajectories. (a) Trajectory of the letters that make up
the name of the proposed method. (b) Trajectory of eight-pattern.

letters IRAL which make up the name of the proposed method and
the path of eight-pattern. The former is more complex compared to
the latter. The measured trajectories are shown in Fig. 11. According
to the results, the ATE RMSE of the proposed method is 0.0783 m and
0.0697 m under two complex trajectories, respectively. It demonstrates
that the proposed method is able to maintain centimeter-level accuracy
even though the motion trajectory of the UAV is more complicated.
Thus, its robust performance is further demonstrated.

5.3. Outdoor experiments

The outdoor experiments are conducted in two venues with the
detailed settings shown in Table 2. The experiments in an open foot-
ball field are conducted to evaluate the performance of the proposed
method under long trajectories. In the result shown in Fig. 12, the
lengths of the two trajectories measured by the proposed method at
daytime and night are 212.68 m and 232.93 m, respectively. During
UAV flight, a common consumer-grade GPS module performs simulta-
neous localization for evaluation. It should be noted that the absolute
position measurements of consumer-grade GPS modules on their own
typically have large drifts. Thus for GNSS-based localization of UAVs in
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Table 2
Outdoor experimental settings of the proposed method.

Setting Environment Illumination Aver. depth (m)

Scenario 5 Open football field Daytime 39.30
Scenario 6 Open football field Night 42.33
Scenario 7 Rainy urban building Daytime 125.43
Scenario 8 Rainy urban building Night 125.30

Fig. 12. Trajectories for outdoor experiments in an open football field. (a) Trajectories
for Scenario 5. (b) Trajectories for Scenario 6.

real-world scenarios, the consumer-grade GPS module is always used
in an integrated navigation system with inertial measurement units
to ensure relative drift-free during motion. Specifically, the relative
accuracy can be maintained at the centimeter level with good satellite
signals. And this accuracy of the module used in the experiment is
tested to be about 4 cm RMSE. Thus it is feasible to calculate the
deviation between the two trajectories provided they are aligned to
the same coordinate system and start points to evaluate the drift of the
proposed method. As seen in Fig. 12, the results of the two localization
systems are very close and the proposed method achieves drift-free
during long trajectory localization. As with the ATE calculation, the
RMSE is still used to quantify this deviation. The results of Scenario 5
and Scenario 6 are 0.279 m and 0.326 m, respectively. This indicates
that the proposed IRAL has the ability to replace or assist GNSS in
sustained flight in outdoor environments.

The main purpose of the outdoor experiments on an urban building
is to validate the localization performance of the proposed method at
9 
Fig. 13. Experimental results at large depths in outdoor environments of an urban
building. (a) Results for Scenario 7. (b) Results for Scenario 8.

large depths, i.e., ranges between the beacon and the vision sensor.
Meanwhile, in order to evaluate the influence of severe weather on the
proposed method, we organized experiments especially on a rainy day.
However, it should be noted that since the electronic devices included
in this work are not waterproof, we chose to conduct the experiment
during the time period when the rain had just stopped. Consistent with
the outdoor experiments at the previous venue, to verify the effect
of illumination conditions, we tested at both daytime and night, with
average depths of 125.43 m and 125.30 m, respectively. In this context,
in order to investigate the robustness under complex trajectories, we
take the same path as in the indoor experiment, which is manipulating
the UAV to move along the track of the letters IRAL. As can be seen
from the results shown in Fig. 13, the proposed method achieves drift-
free even at large depths, and the shape of the complex trajectories
is generally well preserved. This also demonstrates the capability of
the proposed method to be practically deployed in urban environments
with severe weather.

5.4. Discussion

Table 3 lists recent cooperative visual localization methods. In
comparison, the proposed IRAL not only achieves the highest level
of accuracy with a minimum number of required vision sensors and
beacons, but also has significant advantages in terms of environmental
adaptability as well as illumination sensitivity. The proposed method
works both indoors and outdoors and maintains high accuracy at large
depths exceeding a hundred meters. From a cost-effectiveness perspec-
tive, the vision sensor adopted in the proposed method is essentially
composed of a low-cost RGB camera without relying on expensive
special sensors such as DVS. Therefore, the proposed method achieves
the optimal comprehensive performance among similar works and can
be used as a robust and versatile solution for UAV localization in
GNSS-denied environments.

Naturally, there are some limitations to the proposed method ac-
cordingly. In this work, the prerequisite for ensuring localization accu-
racy and stability is that the on-board beacon is always recognized by
the external vision sensor during the flight. For outdoor applications,
although real-world experiments have demonstrated that the proposed
method is assured to be drift-free at large depths and long trajectories,
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Table 3
Comparison of the proposed method with recent optical cooperative localization works.

Method Vision sensor typea Category Required
beacons

Environmental
adaptability

Illumination
sensitivity

Accuracy Maximum
depth (m)

Proposed IRAL NIR band-pass RGB External 1 Indoor & outdoor Insensitive Centimeter-level 126.8
SLO-VLP [20] RGB Internal 3 Indoor only Sensitive Centimeter-level 2.7
LED lamp-based [22] RGB Internal 1 Indoor only Sensitive Centimeter-level 3
VI-RPE [26] PF-MPE Camera External 3 Indoor & outdoor Sensitive Decimeter-level 15
UVDAR-based [25] Ultraviolet Camera External 3 Outdoor only Sensitive Meter-level 15
DVS-based [27] UV/IR cut DVS External 1 Indoor only Insensitive Centimeter-level 6
Planar marker-based [28] RGB Internal 12 Indoor & outdoor Sensitive Decimeter-level 1.5
Infrastructure-based [37] NIR band-pass RGB Internal 3 Outdoor only Insensitive Meter-level 150
CoBe [40] IR band-pass RGB External 6 Indoor only Insensitive Centimeter-level 2

a All sensors listed are monocular.
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the vision sensor needs to operate at long focal lengths in order to
aintain the robustness of the beacon recognition. For a varifocal

camera, elongation of the focal length implies a reduction in the field
of view, which increases the possibility that the UAV flies out of
visible reach resulting in the beacon capture failure. This problem
can currently be solved by manually manipulating the vision sensor
orientation. However, this would still negatively affect the convenience
of the proposed method in practical situations where UAVs frequently
maneuver at high speeds. Thus the current outdoor applications of the
proposed method focus on scenarios where the UAV hovers or cruises
continuously in a certain area to perform its functions, such as precision
agriculture, firefighting, SAR, SHM, etc. Approaches that are expected
to greatly improve this problem will be explored in future work, which
is described in the final section.

5.5. Applications

The proposed method can be used as a cost-effective and efficient
solution for UAV localization in GNSS-denied environments due to its
dvantages in robustness and versatility. In particular, in the following

application scenarios, the proposed method not only replaces GNSS
to accomplish localization, but also well bridges the gap where visual
localization in general cannot be used.

5.5.1. Feature-poor closed environments
Although many visual localization methods, such as SLAM, can per-

form well in closed environments such as indoors and urban canyons,
they are susceptible to degradation or even failure if there is a lack
of features in the environment. While for this work, the on-board NIR
beacon provides robust features as a cooperative target, which makes
the performance of the proposed IRAL in practical use completely
independent of the environmental features.

5.5.2. Open outdoor environments
When UAVs fly in open outdoor environments, such as plateaus,

rasslands, and other wildernesses, they are often tens of meters above
the ground. This results in environmental features being located be-
neath and at a distance from the UAV. Even if using an internal
ooperative method, i.e., deploying beacons on the ground while using
n on-board vision sensor to recognize and then achieve localization,
he same difficulty of deficient robustness of the features is faced.
n contrast, The proposed method not only effectively overcomes the
ifficulties in feature robustness through NIR narrowband-pass vision,
ut also is well suited for scenarios where the UAV is working in
 certain area that is open and unobstructed. A typical case is the
pplication of tethered UAVs which are now gaining increasing atten-
ion [48,49]. It is an emerging type of UAV that operates for long

periods of time by connecting itself to a ground power source with
 high-voltage wire for continuous electricity. Whereas the constant
ired power supply limits the flight range of tethered UAVs as well.
hus in practice they mostly function by hovering or cruising over a

imited area. The proposed method is well suited for these cases, so
hat it has a promising application to tethered UAVs.
10 
5.5.3. GNSS-denied environments in extreme illumination conditions
Since most visual localizations, including cooperative methods, rely

n visible light, they are highly sensitive to illumination conditions.
n this work, the on-board beacon operates in the NIR band, and the
ision sensor also performs narrowband-pass at the same wavelength as
he beacon, so that extreme illumination conditions can be disregarded.
hus the proposed IRAL overcomes the limitations of many visible light
ethods that cannot be used in extreme environments.

6. Conclusion and future work

In this work, we propose a robust and versatile UAV localization
ethod using infrared vision and altitude sensor fusion. The pro-
osed method stably performs high accuracy regardless of illumination
onditions with low-cost components, which achieves optimal perfor-
ance among similar works. The proposed method can thus serve as
 simple yet efficient solution for UAV localization in GNSS-denied
nvironments.

Although the proposed IRAL has already reached the maturity of
real-world deployment, there are still some issues that can be ad-
dressed for future research. During the flight of UAVs in real-world
environments, especially for outdoor applications, there is a possibility
of flying out of the field of view or being obscured by interfering ob-
jects. Whereas the current scheme of manually manipulating the vision
sensor orientation brings inconvenience. One effective solution to this
issue is to automate the sensor orientation manipulation, i.e., achieve
automatic adaptation of the field of view to beacon motion. Or deploy
it on a mobile platform. This would require more sophisticated models
to be constructed in future work. Another issue is that the proposed
method currently only solves the spatial position of the UAV and cannot
produce the attitude. Therefore, in future work we would design a
coupling method to integrate IRAL with an inertial navigation system
for 6-DoF localization.

CRediT authorship contribution statement

Yixian Li: Writing – review & editing, Writing – original draft, Vi-
sualization, Validation, Software, Project administration, Methodology,
Investigation, Formal analysis, Data curation, Conceptualization. Qiang
ang: Writing – review & editing, Supervision, Resources, Project

dministration, Funding acquisition, Conceptualization. Zhonghu Hao:
upervision, Resources, Project administration, Funding acquisition,
onceptualization. Shengrong Hu: Validation, Software, Investiga-
ion, Data curation. Jiaxing Wu: Validation, Software, Data curation.
inkang Dong: Validation, Investigation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.



Y. Li et al.

H
d
i

Measurement 242 (2025) 115917 
Acknowledgments

The authors would like to express their gratitude to Xiangyang
an, Shuai Yan and Yiming Sun at Beijing YUAN Mate Co., Ltd., the
eveloper of the FZMotion motion capture system, for their help in the
ndoor experiments.

Data availability

The authors are unable or have chosen not to specify which data
has been used.

References

[1] X. Lei, X. Xu, G. Wang, H. Luo, A multi-UAV deployment method for border
patrolling based on Stackelberg game, J. Syst. Eng. Electron. 34 (1) (2023)
99–116, http://dx.doi.org/10.23919/JSEE.2023.000022.

[2] M. Lyu, Y. Zhao, C. Huang, H. Huang, Unmanned aerial vehicles for search and
rescue: A survey, Remote Sens. 15 (13) (2023) 3266, http://dx.doi.org/10.3390/
rs15133266.

[3] D. Perez-Saura, M. Fernandez-Cortizas, R. Perez-Segui, P. Arias-Perez, P. Campoy,
Urban firefighting drones: Precise throwing from UAV, J. Intell. Robot. Syst. 108
(4) (2023) 66, http://dx.doi.org/10.1007/s10846-023-01883-6.

[4] P. Zhang, X. Sun, D. Zhang, Y. Yang, Z. Wang, Lightweight deep learning
models for high-precision rice seedling segmentation from UAV-based multi-
spectral images, Plant Phenomics. 5 (2023) 0123, http://dx.doi.org/10.34133/
plantphenomics.0123.

[5] K. Strząbała, P. Ćwiąkała, W. Gruszczyński, E. Puniach, W. Matwij, Determining
changes in building tilts based on UAV photogrammetry, Measurement 202
(2023) 111772, http://dx.doi.org/10.1016/j.measurement.2022.111772.

[6] J.A. Gonçalves, R. Henriques, UAV photogrammetry for topographic monitoring
of coastal areas, ISPRS-J. Photogramm. Remote Sens. 104 (2015) 101–111,
http://dx.doi.org/10.1016/j.isprsjprs.2015.02.009.

[7] D. Kang, Y. Cha, Autonomous UAVs for structural health monitoring using deep
learning and an ultrasonic beacon system with geo-tagging, Comput. Aided
Civ. Infrastruct. Eng. 33 (10) (2018) 885–902, http://dx.doi.org/10.1111/mice.
12375.

[8] R. Ali, D. Kang, G. Sah, Y. Cha, Real-time multiple damage mapping using
autonomous UAV and deep faster region-based neural networks for GPS-denied
structures, Autom. Constr. 130 (2021) 103831, http://dx.doi.org/10.1016/j.
autcon.2021.103831.

[9] A. Couturier, M.A. Akhloufi, A review on absolute visual localization for UAV,
Robot. Auton. Syst. 135 (2021) 103666, http://dx.doi.org/10.1016/j.robot.2020.
103666.

[10] N. Zhu, J. Marais, D. Bétaille, M. Berbineau, GNSS position integrity in urban
environments: A review of literature, IEEE Trans. Intell. Transp. Syst. 19 (9)
(2018) 2762–2778, http://dx.doi.org/10.1016/10.1109/TITS.2017.2766768.

[11] Y. Zhuang, X. Sun, Y. Li, J. Huai, L. Hua, X. Yang, X. Cao, P. Zhang, Y. Cao,
L. Qi, Multi-sensor integrated navigation/positioning systems using data fusion:
From analytics-based to learning-based approaches, Inf. Fusion. 95 (2023) 62–90,
http://dx.doi.org/10.1016/j.inffus.2023.01.025.

[12] B. Zhou, J. Pan, F. Gao, S. Shen, RAPTOR: Robust and perception-aware
trajectory replanning for quadrotor fast flight, IEEE Trans. Robot. 37 (6) (2021)
1992–2009, http://dx.doi.org/10.1109/TRO.2021.3071527.

[13] J. Zhang, R. Liu, K. Yin, Z. Wang, M. Gui, S. Chen, Intelligent collaborative
localization among air-ground robots for industrial environment perception, IEEE
Trans. Ind. Electron. 66 (12) (2019) 9673–9681, http://dx.doi.org/10.1109/TIE.
2018.2880727.

[14] T. Qin, P. Li, S. Shen, VINS-mono: A robust and versatile monocular visual-
inertial state estimator, IEEE Trans. Robot. 34 (4) (2018) 1004–1020, http:
//dx.doi.org/10.1109/TRO.2018.2853729.

[15] T. Qin, J. Pan, S. Cao, S. Shen, A general optimization-based framework for
global pose estimation with multiple sensors, 2019, arXiv preprint arXiv:1901.
0364.

[16] X. Yang, S. Zheng, X. Lin, F. Zhu, Improving RGB-D SLAM accuracy in dynamic
environments based on semantic and geometric constraints, Measurement 217
(2023) 113084, http://dx.doi.org/10.1016/j.measurement.2023.113084.

[17] M. Blöesch, S. Weiss, D. Scaramuzza, R. Siegwart, Vision based mav navi-
gation in unknown and unstructured environments, in: Proc. IEEE Int. Conf.
Robot. Automat, ICRA, 2010, pp. 21–28, http://dx.doi.org/10.1109/ROBOT.
2010.5509920.

[18] D. Kong, Y. Zhang, W. Dai, Direct near-infrared-depth visual SLAM with active
lighting, IEEE Robot Automat. Lett. 6 (4) (2021) 7057–7064, http://dx.doi.org/
10.1109/LRA.2021.3096741.

[19] E. Brassart, C. Pegard, M. Mouaddib, Localization using infrared beacons,
Robotica 18 (2000) 153–161, http://dx.doi.org/10.1017/S0263574799001927.
11 
[20] W. Guan, L. Huang, B. Hussain, C. Yue, Robust robotic localization using visible
light positioning and inertial fusion, IEEE Sens. J. 22 (6) (2022) 4882–4892,
http://dx.doi.org/10.1109/JSEN.2021.3053342.

[21] J. Krejsa, S. Vechet, Infrared beacons based localization of mobile robot,
Elektron. Elektrotech. 117 (1) (2012) 17–22, http://dx.doi.org/10.5755/j01.eee.
117.1.1046.

[22] H. Li, H. Huang, Y. Xu, Z. Wei, S. Yuan, P. Lin, H. Wu, W. Lei, J. Fang,
Z. Chen, A fast and high-accuracy real-time visible light positioning system
based on single LED lamp with a beacon, IEEE Photon. J. 12 (6) (2020) 1–12,
http://dx.doi.org/10.1109/JPHOT.2020.3032448.

[23] J. Guo, Q. Zhang, H. Chai, Y. Li, Obtaining lower-body Euler angle time
series in an accurate way using depth vision sensor relying on optimized
kinect CNN, Measurement 188 (2022) 110461, http://dx.doi.org/10.1016/j.
measurement.2021.110461.

[24] N. Goldfarb, A. Lewis, A. Tacescu, G.S. Fischer, Open source vicon toolkit
for motion capture and gait analysis, Comput. Methods Programs Biomed. 212
(2021) 1–13, http://dx.doi.org/10.1016/j.cmpb.2021.106414.

[25] V. Walter, N. Staub, A. Franchi, M. Saska, UVDAR system for visual relative
localization with application to leader–follower formations of multirotor UAVs,
IEEE Robot Automat. Lett. 4 (3) (2019) 2637–2644, http://dx.doi.org/10.1109/
LRA.2019.2901683.

[26] L. Teixeira, F. Maffra, M. Moos, M. Chil, VI-RPE: Visual-inertial relative pose
estimation for aerial vehicles, IEEE Robot Automat. Lett. 3 (4) (2018) 2770–2777,
http://dx.doi.org/10.1109/LRA.2018.2837687.

[27] H. Stuckey, A. Al-Radaideh, L. Sun, W. Tang, A spatial localization and attitude
estimation system for unmanned aerial vehicles using a single dynamic vision
sensor, IEEE Sens. J. 22 (15) (2022) 15497–15507, http://dx.doi.org/10.1109/
JSEN.2022.3187423.

[28] Z. Wang, Z. Zhang, W. Zhu, X. Hu, H. Deng, G. He, X. Kang, A robust planar
marker-based visual SLAM, Sensors 23 (2) (2023) 1–13, http://dx.doi.org/10.
3390/s23020917.

[29] O. Ni, H. Cai, J. Yang, J. Wang, Targetless extrinsic calibration of vision sensor
and low-resolution 3-D LiDAR, IEEE Sens. J. 23 (10) (2023) 10889–10899,
http://dx.doi.org/10.1109/JSEN.2023.3263833.

[30] D. Qiu, S. Li, T. Wang, Q. Ye, R. Li, K. Ding, H. Xu, A high-precision calibration
approach for vision sensor-IMU pose parameters with adaptive constraint of
multiple error equations, Measurement 153 (2020) 107402, http://dx.doi.org/
10.1016/j.measurement.2019.107402.

[31] M. Krawez, T. Caselitz, J. Sundram, M. Van Loock, W. Burgard, Real-time outdoor
illumination estimation for vision sensor tracking in indoor environments, IEEE
Robot Automat. Lett. 6 (4) (2021) 6084–6091, http://dx.doi.org/10.1109/LRA.
2021.3090455.

[32] P. Bison, G. Chemello, C. Sossai, G. Trainito, Using a structured beacon for
cooperative position estimation, Robot. Auton. Syst. 29 (1) (1999) 33–40, http:
//dx.doi.org/10.1016/S0921-8890(99)00036-6.
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